Simple and Efficient Heterogeneous Graph Neural Network

Xiaocheng Yang¹, Mingyu Yan*¹, Shirui Pan², Xiaochun Ye¹, Dongrui Fan^{1,3}

State Key Lab of Processors, Institute for Computing Technology, Chinese Academy of Sciences, China
 School of Information and Communication Technology, Griffith University, Australia
 School of Computer Science and Technology, University of Chinese Academy of Sciences, China {yangxiaocheng, yanmingyu}@ict.ac.cn, s.pan@griffith.edu.au, {yexiaochun, fandr}@ict.ac.cn

AAAI-2023

Code: https://github.com/ICT-GIMLab/SeHGNN

Introduction

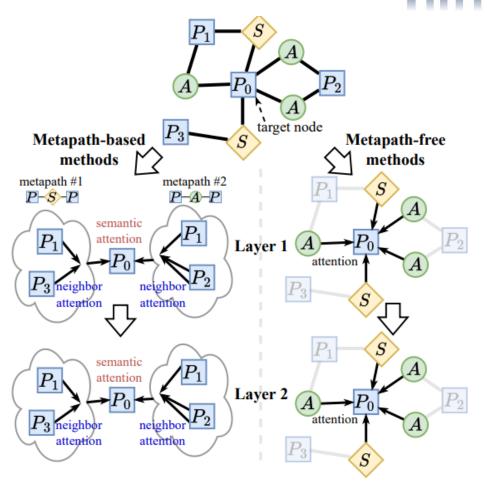


Figure 1: The general architectures of metapath-based methods and metapath-free methods on heterogeneous graphs.

Existing HGNNs inherit many mechanisms from graph neural networks (GNNs) over homogeneous graphs, especially the attention mechanism and the multi-layer structure.

These mechanisms bring excessive complexity, but seldom work studies whether they are really effective on heterogeneous graphs

Method

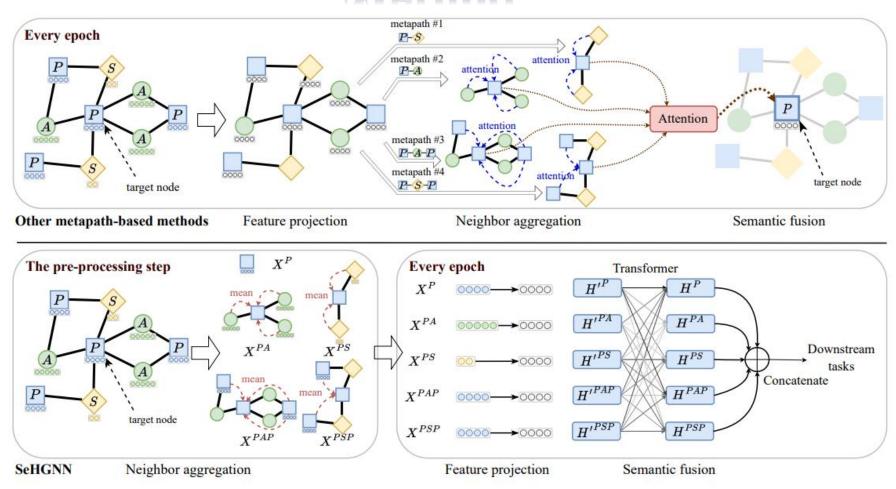


Figure 2: The architecture of SeHGNN compared to previous metapath-based methods. The example is based on ACM dataset with node types author (A), paper (P), and subject (S). This figure exhibits aggregation of 0-hop metapath P (the target node itself), 1-hop metapaths PA, PS, and 2-hop metapaths PAP, PSP.

Method

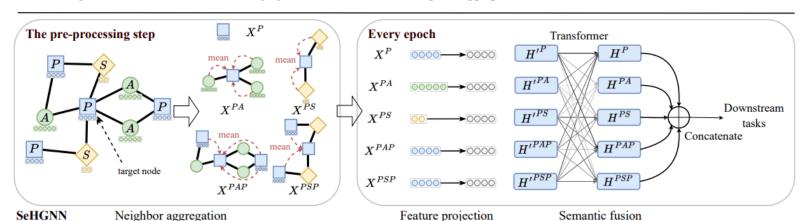


Other metapath-based methods

Feature projection

Neighbor aggregation

Semantic fusion



$$m_i = \{ \mathbf{z}_i^{\mathcal{P}} = \frac{1}{||S^{\mathcal{P}}||} \sum_{p(i,j) \in S_{\mathcal{P}}} \mathbf{x}_j : \mathcal{P} \in \Phi_X \},$$

where $S^{\mathcal{P}}$ is the set of all metapath instances corresponding to metapath \mathcal{P} and p(i, j) is one metapath instance with the target node i and the source node j.

$$X^{c} = \{x_0^{cT}; x_1^{cT}; \dots; x_{||V^c||-1}^{c}\} \in \mathbb{R}^{||V^c|| \times d^c}$$

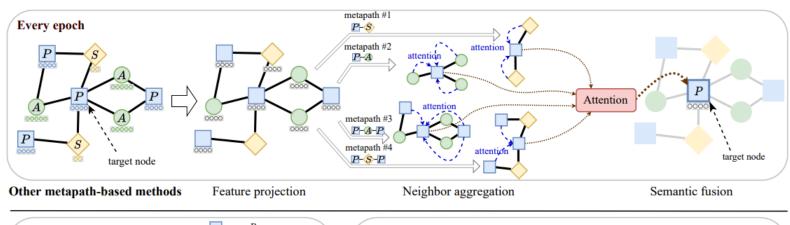
be the raw feature matrix of all nodes belonging to type c,

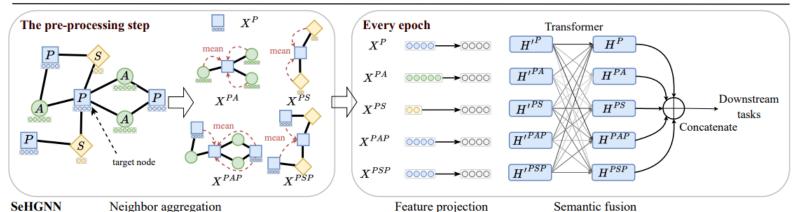
$$X^{\mathcal{P}} = \hat{A}_{c,c_1} \hat{A}_{c_1,c_2} \dots \hat{A}_{c_{l-1},c_l} X^{c_l},$$

where $\mathcal{P} = cc_1c_2 \dots c_l$ is a l-hop metapath, and $\hat{A}_{c_i,c_{i+1}}$ is the row-normalized form of adjacency matrix $A_{c_i,c_{i+1}}$ between node type c_i and c_{i+1} .

$$Y^{\mathcal{P}} = \text{rm_diag}(\hat{A}^{\mathcal{P}})Y^{c}, \, \hat{A}^{\mathcal{P}} = \hat{A}_{c,c_{1}}\hat{A}_{c_{1},c_{2}}\dots\hat{A}_{c_{l-1},c},$$

Method





$$H'^{\mathcal{P}} = \mathrm{MLP}_{\mathcal{P}}(\mathbf{X}^{\mathcal{P}}).$$

$$q^{\mathcal{P}_i} = W_Q h'^{\mathcal{P}_i}, \ k^{\mathcal{P}_i} = W_K h'^{\mathcal{P}_i}, \ v^{\mathcal{P}_i} = W_V h'^{\mathcal{P}_i}, \ \mathcal{P}_i \in \Phi,$$

$$\alpha_{(\mathcal{P}_i, \mathcal{P}_j)} = \frac{\exp(q^{\mathcal{P}_i} \cdot k^{\mathcal{P}_j}^T)}{\sum_{\mathcal{P}_t \in \Phi} \exp(q^{\mathcal{P}_i} \cdot k^{\mathcal{P}_t}^T)},$$

$$h^{\mathcal{P}_i} = \beta \sum_{\mathcal{P}_j \in \Phi} \alpha_{(\mathcal{P}_i, \mathcal{P}_j)} v^{\mathcal{P}_j} + h'^{\mathcal{P}_i},$$

where W_Q, W_K, W_V, β are trainable parameters shared for all metapaths.

$$\operatorname{Pred} = \operatorname{MLP}([h^{\mathcal{P}_1}||h^{\mathcal{P}_2}||\dots||h^{\mathcal{P}_{|\Phi|}}]).$$

	DBLP		ACM	
	macro-f1	micro-f1	macro-f1	micro-f1
HAN	92.59	93.06	90.30	90.15
HAN*	92.75	93.23	90.61	90.48
HAN^\dagger	92.19	92.66	89.78	89.67
HGB	94.15	94.53	93.09	93.03
HGB*	94.20	94.58	93.11	93.05
HGB^\dagger	93.77	94.15	92.32	92.27

Table 1: Experiments to analyze the effects of two kinds of attentions. * means removing neighbor attention and † means removing semantic attention.

Finding 1: Semantic attention is essential while neighbor attention is not necessary.

	DBLP		ACM	
network	macro-f1	micro-f1	macro-f1	micro-f1
(1,)	79.43	80.16	89.81	90.03
(1,1)	85.06	86.69	90.79	90.87
(2,)	88.18	88.83	91.64	91.67
(1,1,1)	88.38	89.37	87.95	88.84
(3,)	93.33	93.72	92.67	92.64
(1,1,1,1)	89.55	90.44	88.62	88.93
(2,2)	91.88	92.35	92.57	92.53
(4)	93.60	94.02	92.82	92.79

Table 2: Experiments to analyze the effects of different combinations of the number of layers and the maximum metapath hop. e.g., the structure (1,1,1) means a three-layer network with all metapaths no more than 1 hop in each layer.

Finding 2: Models with single-layer structure and long metapaths perform better than those with multi-layers and short metapaths.

		DBLP		IM	DB	B ACM		Freebase	
		macro-f1	micro-f1	macro-f1	micro-f1	macro-f1	micro-f1	macro-f1	micro-f1
	RGCN	91.52±0.50	92.07±0.50	58.85±0.26	62.05±0.15	91.55±0.74	91.41±0.75	46.78±0.77	58.33±1.57
1st	HetGNN	91.76±0.43	92.33±0.41	48.25±0.67	51.16±0.65	85.91±0.25	86.05±0.25	-	-
181	HAN	91.67±0.49	92.05±0.62	57.74±0.96	64.63±0.58	90.89±0.43	90.79±0.43	21.31±1.68	54.77±1.40
	MAGNN	93.28±0.51	93.76±0.45	56.49±3.20	64.67±1.67	90.88±0.64	90.77±0.65	-	-
21	RSHN	93.34±0.58	93.81±0.55	59.85±3.21	64.22±1.03	90.50±1.51	90.32±1.54	-	-
	HetSANN	78.55±2.42	80.56±1.50	49.47±1.21	57.68±0.44	90.02±0.35	89.91±0.37	-	-
2nd	HGT	93.01±0.23	93.49±0.25	63.00±1.19	67.20±0.57	91.12±0.76	91.00±0.76	29.28±2.52	60.51±1.16
	HGB	94.01±0.24	94.46±0.22	63.53±1.36	67.36±0.57	93.42±0.44	93.35±0.45	47.72±1.48	66.29±0.45
3rd	SeHGNN	95.06±0.17	95.42±0.17	67.11±0.25	69.17±0.43	94.05±0.35	93.98±0.36	51.87±0.86	65.08±0.66
4th	Variant#1	93.61±0.51	94.08±0.48	64.48±0.45	66.58±0.42	93.06±0.18	92.98±0.18	33.23±1.39	57.60±1.17
	Variant#2	94.66±0.27	95.01±0.24	65.27±0.60	66.68±0.52	93.46±0.43	93.38±0.44	46.82±1.12	64.08±1.43
	Variant#3	94.86±0.14	95.24±0.13	66.63±0.34	68.21±0.32	93.95±0.48	93.87±0.50	50.71±0.44	63.41±0.47
	Variant#4	94.52±0.05	94.93±0.06	64.99±0.54	66.65±0.50	93.88±0.63	93.80±0.64	35.48±1.36	60.03±1.13

Table 3: Experiment results on the four datasets from HGB benchmark, where "-" means that the models run out of memory.

	Feature	Neighbor	Semantic	Total
	projection	aggregation	fusion	Total
SeHGNN	$O(NKD^2)$			$O(NK^2D^2)$
HAN	$O(NKD^2)$	$O(NK\mathcal{E}_1D^2)$	$O(NKD^2)$	$O(NK\mathcal{E}_1D^2)$
HGB	$O(NLD^2)$	$O(N\mathcal{E}$	$(2D^2)$	$O(N\mathcal{E}_2D^2)$

Table 5: Theoretical complexity of SeHGNN, HAN and HGB in every training mini-batch.

Methods	Validation accuracy	Test accuracy
RGCN	48.35±0.36	47.37±0.48
HGT	49.89±0.47	49.27±0.61
NARS	51.85±0.08	50.88±0.12
SAGN	52.25±0.30	51.17±0.32
GAMLP	53.23±0.23	51.63±0.22
HGT+emb	51.24±0.46	49.82±0.13
NARS+emb	53.72±0.09	52.40±0.16
GAMLP+emb	55.48±0.08	53.96±0.18
SAGN+emb+ms	55.91±0.17	54.40±0.15
GAMLP+emb+ms	57.02±0.41	55.90±0.27
SeHGNN	55.95±0.11	53.99±0.18
SeHGNN+emb	56.56±0.07	54.78±0.17
SeHGNN+ms	58.70±0.08	56.71±0.14
SeHGNN+emb+ms	59.17±0.09	57.19±0.12

Table 4: Experiment results on the large-scale dataset ogbnmag compared with other methods on the OGB leaderboard, where "emb" means using extra embeddings and "ms" means using multi-stage training.

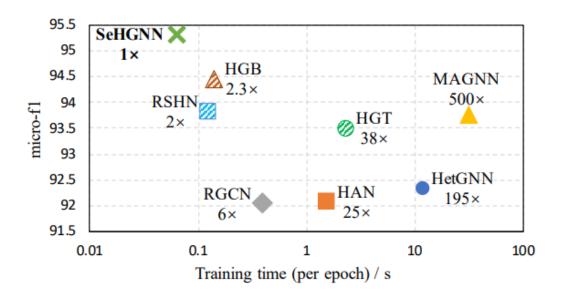


Figure 3: Micro-f1 scores and time consumption of different HGNNs on DBLP dataset. Numbers below model names exhibit the ratio of time consumption relative to SeHGNN. e.g., "6x" below RGCN means RGCN costs 6 times of time.

Thanks